
Deterministic Middleware for 
Cloud Native Development

Ravi Akella

Sr. Manager

DENSO, Palo Alto, CA, USA

May 15, 2025

APAC SOAFEE Seminar, Tokyo



2

DENSO’s shift to Software-First

Building social infrastructure based on reliable technologies and a commitment to quality



3

SDV as a social infrastructure 

• SOAFEE is addressing key challenges making the journey exciting!
• Environmental parity
• Mixed Criticality
• Now, Determinism



4

Overview of determinism

How do we want our 
application to behave: 

Specification to model?

Runtime environment 
that guarantees 
application behavior

What tools do we have to 
ensure behavior is 
preserved?

Environmental Parity: Can we 
detect divergence from spec 
and tune for optimality?

Can we preserve the intended 
behavior with version changes 
and new features

End-end considerations throughout the SW lifecycle, leveraging Cloud native development 

Given the same set of 
inputs repeatedly, get 
same outputs 

Future state is entirely 
predictable based on the 
current state and inputs
 

Guaranteeing that critical 
tasks and processes meet 
their deadlines consistently
 

Prioritizing time-critical 
tasks through real-time 
scheduling policies 

 



5

Need for Determinism in future SDV applications

5 

RSU

𝑡1𝑡2

Expected behavior:
• Safety (no collisions)
• Fairness (First in First out)
• Utility (Optimal traffic flow at intersection)
• Reliability (Enforce specific policies)

Non-deterministic behavior:
• Collisions
• Intersection blocking
• Unsafe maneuvers
• Lower intersection throughput with more vehicles

Cooperative maneuvers using an Road Side Unit 

Possible sources of observed non-deterministic behavior
• Network latencies (Usual and injected)
• Clock synchronization error between vehicles
• Simulation server



6

Determinism: An end-end requirement for SDV Applications

• Growing software complexity

• Target Environment dependencies

• WCETS

• Task Priorities

• OS specific scheduling policies

• Interrupt

• Context switching

• Networking

• Integration 

• Cross domain

• Legacy assets part of SDV transition

• OSS

• Communication middleware

Why is it hard

Source: SBD
• Reduces code complexity

• Efficient HW utilization

• Performance through parallelism

• Helps meet security and privacy analysis

Key benefits of 
deterministic SW



7

• Reactive: Detect when bad 
things happen, Trigger fault 
response

• Proactive: Look ahead, prevent 
from happening

• No bargain for hard safety critical 
applications

• Workload attached to a core 
should always be prioritized 

• Workload execution schedules 
set per core

• WCET calculated is based on 
such assumptions

• Lesser determinism is acceptable

• Set guard rails: micro behaviors 
not important

• Let virtualization/OS deal with 
it. Just account for the delays.

Solution classesHow deterministic can you get

Determinism in the context of SDV



8

Expressing determinism: an approach 

Consistency requirement, expressed as logical delays: 
the Braking system’s camera data can be 10 milliseconds 
more outdated than the Vision system’s camera data.

Availability requirements, expressed as deadlines: i) 
braking triggered by the brake pedal must respond within 
3 milliseconds, ii) braking triggered by the Vision system 
must respond within 10 milliseconds.

Aggregate latency (Processing, network, etc.)

Precise event 
timestamping

Ability to express consistency and availability requirements, allowing application redesign and performance tuning

CAP Theorem

lf-lang.org

End-end deadline 
violation detection

Source: Prof. Lee, UC Berkeley



9

Determinism in the context of mixed criticality

• The high-criticality task takes priority and executes to completion before the 
low-criticality tasks start executing

Priority based on criticality

No prioritization

• Intermittent deadline misses at the low-criticality task

• High-criticality components prioritize availability over consistency, lower-criticality components may prefer consistency 
and can tolerate delays.

Static priority assignment based on criticality is not sufficient to handle a mixed-criticality workloads



10

Determinism in the context of Environmental Parity
• Development environment that enables hardware-independent software development

https://www.denso.com/global/en/driven-base/tech-design/sdx/

• Performance may not match real hardware
• Fixed timings for CPU, Memory, and I/O operations
• Real hardware may perform better or worse than the model

• Deterministic system design is required to achieve environmental parity while reaping the 
benefits of virtual SoCs

Zephyr’s zbus benchmark

Native 
vSoC

Real SoCCloud 
vSoC

Native 
vSoC

Real SoC
Cloud 
vSoC

Prepare for these differences in your application design



11

2. Mixed Critical Orchestration (MCO): Runtime enforcement of time 
properties 

• Detection of deadline violations and novel handling mechanisms

• Real-time application monitoring with insights

1. System modeling: Lingua Franca model specification and code 
generation for mixed critical SDV applications

Deterministic SDV Middleware: Architecture

3. Cloud Native Engineering: Life cycle management of application

• SDV Software Development Kit (SDK): Virtual SoC, Embedded 
mixed critical deployment support

Virtual execution environments
Mixed Critical Orchestrator

Application 
requirements

System design 
requirements

Representative ADAS App

Generated Code

A time centric solution for design and cloud native development of SDV applications 

Domain Middleware

GP Linux (EWAOL, AutoSD)

Hypervisor

Mixed Critical Orchestrator

Runtime Container 
Orchestrator

Safety SoC

Guest 
RTOS

Hypervisor

Guest 
RTOS

HPC

Deploy Validated applications 



12

Features of deterministic middleware

• Triggering pod management based on 
deadline violations

AD Stack 
(ROS, OpenADKit)

Linux (Yocto, 

AutoSD, Ubuntu)

App. workload

MCO

RTOS 
(Zephyr/Autosar)

MCO

MCU App

RTI

Mixed criticality configuration

eth

NVIDIA Orin (Primary compute) R-car S4 (Safety Island)

• Workload orchestration with safety island

• Detection of application 
bottlenecks using live 
monitoring

• Scheduling analysis for 
performance tuning

Runtime Observability Cloud provisioning playbooks

• Automated, turnkey 
provisioning and 
deployment of applications

• Support for edge 
deployment

Deterministic app development

• Data flow modeling of 
applications

• Distributed event scheduling 
and real-time processing

• Repeatable and testable 
software behavior

Container orchestration



13

How to achieve determinism: using an example

Vehicle can consistently trigger the brakes in time not to collide.

2. Dynamically manage processing mode

1. Detection of deadline violations

3. Lower max lag to meet design spec

Increasing max lag => 
violation of design spec 

As the event queue size grows (Max. Lag), the vehicle becomes less 
capable of stopping on time

Nondeterministic case Deterministic behavior with our middleware 

• Familiar safety critical application leveraging SDV workflow
• Integration of system modeling approach with cloud native development

Visit our desk for live demo of this app



14

AVP Application

Automated Valet Parking (AVP)

• Autonomously park and return to a pick-up/drop-off area in a 
parking lot

• Autoware Foundation’s original demo* ported to Open AD Kit 
v1.0

• AVP exhibits non-deterministic behavior (Eg: unresponsiveness, 
jitteriness, etc.) on SDV platform

• This problem highlights the importance of deterministically 
scheduling various interacting subcomponents

Lingua Franca enforced deterministic scheduling to suppress observed issues in original demo

LF system modeling of AVP application

Open AD Kit application on Deterministic SDV Middleware

*URL:https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/avpdemo.html

https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/avpdemo.html
https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/avpdemo.html


15

AWS graviton instance with SOAFEE EWAOL
x86_64 + gpu instance

Autoware.Auto Simulator
(ScenarioSim/RViz
LGSVL+rosbridge)

Open AD Kit
SOAFEE EWOAL

MCO

AVP workload as 
LF reactor

Open AD Kit
SOAFEE EWOAL

MCO

AVP workload as 
LF reactor

QM Safety critical

LF Runtime Infrastructure (RTI)

K3S

Integrated LF and Open AD Kit application

Deploy generated code as containers on cloud

• Coordinated federated execution among 
SDV “microservices”

• Mixed Critical Orchestrator (MCO) 
manages the scheduling across workloads

• Porting ROS2 nodes to our midleware

• In current configuration, safety critical and 
QM containers run on virtual High 
Performance Compute (HPC)



16

DENSO’s (first) SOAFEE blueprint
• Open-sourced Automated Valet Parking application

Original AVP application exhibits unreliable behavior (Eg: unresponsiveness, jitteriness, etc.)
 

Deterministic middleware provided end-end methodology and tooling to address such issues

Blog soon to be published on soafee.io

Available for trial



Thank you!


	Default Section
	Slide 1: Deterministic Middleware for Cloud Native Development
	Slide 2: DENSO’s shift to Software-First
	Slide 3: SDV as a social infrastructure 
	Slide 4: Overview of determinism
	Slide 5: Need for Determinism in future SDV applications
	Slide 6: Determinism: An end-end requirement for SDV Applications
	Slide 7
	Slide 8: Expressing determinism: an approach 
	Slide 9: Determinism in the context of mixed criticality
	Slide 10: Determinism in the context of Environmental Parity
	Slide 11: Deterministic SDV Middleware: Architecture
	Slide 12: Features of deterministic middleware
	Slide 13: How to achieve determinism: using an example
	Slide 14
	Slide 15: Integrated LF and Open AD Kit application
	Slide 16: DENSO’s (first) SOAFEE blueprint
	Slide 17: Thank you!


