
Enabling a Software-Defined Automotive Edge with VirtIO based Device
Virtualization

Sep 21, 2023

Jerry, Jiancong Zhao

Supervisor

Panasonic Automotive Systems Co., Ltd.

Who am I ?

✓ Born in Tianjin, China

✓ University in Hong Kong

- Bachelor of Engineer in Industrial Engineering in HKU

✓ Work in Japan

- Panasonic Automotive Systems Co., Ltd. since 2017

✓ Focusing on SDV related advanced engineering including virtualization and cloud-native.

Representatives of company in multiple OSS initiatives

- Expert Group Leader of Automotive Grade Linux (AGL) Software-Defined Vehicle Expert Group (SDV-EG)

- SOAFEE activities (e.g. TSC)

✓ Hobby: Travel, Tea, Game

2© Panasonic Automotive Systems Co., Ltd

3 v3.0

Background: Why SDV is Needed and How Device
Virtualization Enables it

Tide of shifting to Software-Defined Vehicles (SDV)

Electronic parts and software ratio
has doubled in ten years.

Interior Engine Chassis Body Overall

Mechanical parts

Electronic parts and software

*2: Source: Ministry of Economy, Trade and Industry "Tow ard acceleration of productivity improvement by IT"
Mitsubishi UFJ Morgan Stanley Securities' materials, etc.

[Reference: The number of source code lines of other products]
• Android OS:12 million lines
• F-35 combat aircraft: 24 million lines
• Microsoft Office 2013: 44 million lines

Year 2000 2007 2024?

1 million lines

5 million to
10 million lines

1 billion lines

More complicated
automotive software(*1) (*2)

2004

2015

%

%

*1: Source: McKinsey "Managing innovations on the road"

100 million lines

2016

Automated
driving Lv4

Most explosive evolutions are happening by DIGITAL and SOFTWARE.

Two-fold

Thousand-
fold

4

Those who can advance their software more rapidly
will gain crucial competitive advantage.

Drastic Changes in Automotive Architecture

ECU Consolidation Virtualization Platform

Apps

OS

BSP

SoC

ECU1

Apps

OS

BSP

SoC

ECU2

Apps

OS

BSP

SoC

ECU3

Apps

OS

BSP

SoC

ECU4

Apps

OS

Hypervisor (HV)

BSP

VM1

SoC

Apps

OS

VM2

Apps

OS

VM3

Apps

OS

VM4

2022年5月 | © パナソニックオートモーティブシステムズ株式会社 5

Shifting to SDVs - Changing the Mind of Vehicle Values

6

Driven by

SDVs

Drastic Changes in Architecture Open source, de facto standard

Connected and AI-powered Big IT players

The Best Stocker - stock.adobe.com

gguy - stock.adobe.com

WeightCost

SDVs =

Speedily Delivered (User)

Values

Those who can evolve software more rapidly will secure competitive advantages.

Game Change in the Automotive Industry

Key Strategies

Possessing larger

software team

Maximizing LOC
per man-month

7

Key Strategies

Sophistication

of architecture
Complementing
with ecosystems

Rapid product

discovery

Makes Apps code

simple by hiding

the detail of the

underlying platform

Decouples software

from underlying

hardware

Advancement of technology and updates are difficult.

Overlap of computing resources is an issue also.

Automated

parking

Vehicle
control

Body ADAS CECU

Control Navi

Navi
Map

Sensing
peripheral

env ironmen
tsPosition
recognition

Indoor
recognition

HD
MAP

"Those who can advance their software more rapidly

will gain crucial competitive advantage."

ECU consolidation is not a purpose but means --- The true purpose is to establish the optimal

architecture for evolution of software.

Processor system

General purpose
peripheral

In-vehicle network

Application Framework

Hardware Virtualization Framework

Data

AGL Android RTOS
Autosar

(AP)

Applications

3rd Party

Desirable Direction of Automotive System Architecture

8

Logical

architecture

Historical Trend of General Computing Architecture (Distribution
and Centralization)

9

Created by Panasonic Automotive Systems referring to ITmedia IT solution

cram school [Graphic explanation] History of virtualization on a single sheet

https://blogs.itmedia.co.jp/itsolutionjuku/2015/06/post_90.html

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP

OS

AP AP

HW

AP AP AP

HV

OS OS OS

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP AP AP

HV

OS OS OS
Orchestrator

HV HV

HW HW HW

AP
AP

Distribution

Centralization Centralization

Distribution

Centralization
Orchestration

1964 1967 1980s 1999 2000s

IBM S/360 IBM S/360 CP-40/67 VMware

AP
AP AP

AP

OS

OS

The history of general computing architecture is repeating the cycle between centralization and distribution,
and the automotive industry is following a similar path.

OS OSOS

https://blogs.itmedia.co.jp/itsolutionjuku/2015/06/post_90.html

2023 © Panasonic Automotive Systems Co., Ltd. 10

Centralization Distribution

⚫ Diversity of Devices due to Various Car Models
⚫ Allocation policies of applications and devices added difficulty in determining

optimal system architecture whether distributed or centralized

Greater Complexity in Automotive to Determine Optimal Architecture

Swing

Complicated natures of both devices and applications make a greater complexity for automotive

Historical Trend of General Computing Architecture (Distribution
and Centralization)

2022年5月 | © パナソニックオートモーティブシステムズ株式会社 11

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP

OS

AP AP

HW

AP AP AP

HV

OS OS OS

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP AP AP

HV

OS OS OS

HV HV HV

HW HW HW

Distribution

Centralization Centralization

Distribution

Centralization
Orchestration

1964 1967 1980s 1999 2000s

Orchestrator

HW-agnostic Virtualization Framework: Decouple Operating Systems from Hardware

AP
AP

AP
AP

AP
APApplications

Hardware

OS-Agnostic Application Framework: Decouple Application from Operating Systems

No matter how the underlaying computing architecture has changed, a consistent objective is to decouple apps
(directly contributed to user values) from underlying computing architecture

→ An Operating-System-Agnostic Application Framework and a Hardware-Agnostic Abstraction Framework
are continuously to be the key to drive industry shift from hardware-centric to software-defined

OSOS OSOS OSOSOperating Systems

2023 © Panasonic Automotive Systems Co., Ltd. 12

Today Focus: Device Virtualization – Key to SDV

cameraTCUDevices display
1

storage
1

display
2

storage
2

NPU

...

Cohesion

Info.

Load characteristics

Virtual Devices

Applications

Application View of Virtualized DevicesApplications

Software Defined Vehicle needs a common device virtualization framework to decouple software
implementation from diverse hardware targets across vehicle variants/generations, architectures

(single/multiple-ECU) and development environments (real/virtual ECU)

Virtual display Virtual storage

Common Device Virtualization
Framework applied for diverse HW
environments

Standard Device Virtualization Framework - VirtIO

2023 © Panasonic Automotive Systems Co., Ltd.

14

Overview of Device Virtualization - Concept

cloud

AGL/Android

VirtIO

AGL/An
droid

VirtIO

Hypervisor

SoC

Host VM

Hypervisor
Environment

AGL/Android

VirtIO

SoC

Non-Hypervisor
Environment

Other OS
(RTOS etc.)

VirtIO

Cloud
Environment

AGL/Android

VirtIO

SoC SoC

Multi-ECU
Environment

AGL/Android

Device Virtualization with VirtIO benefits in establishing
a complete and healthy ecosystem for industry to enhance interchangeability and

interoperability in various scenarios.

Emulated Device

Pains around Virtualization in the Past

15

Proprietary Para
Virtual Devices ZC,ZD

Must Adapt to Every Single Incompatible Interface!

Android/AGL Middleware

Apps

SoC A SoC B SoC C SoC D

Hypervisor X Hypervisor Y Hypervisor Z

Proprietary Para
Virtual Devices XA

Proprietary Para
Virtual Devices ZC,ZD

Proprietary BE Device
Drivers XA, YA

Proprietary BE Device
Drivers YB

Proprietary BE Device
Drivers YC, ZC

Proprietary BE Device
Drivers ZD

Limited Freedom to Choose Hypervisor and SoC Combination!

Linux

Exten
sion

Dependency

on specific virtualization

solutionFragmentation
Serious Barrier

For “Virtualization

Ready BSP”

Proprietary Para Virtual
Devices YA, YB…

Proprietary Para Virtual
Devices YA, YB…

Proprietary Para
Virtual Devices YA,YB…

Excerpt from Panasonic’s Keynote Presentation at the AGL AMM July 2020

Enter Standard Virtualization Framework - VirtIO

16

Excerpt from AGL F2F OpenSynergy’s Presentation on Oct 2022

• Developed in 2008 as a hypervisor neutral way of

accessing devices

• Provide virtual machines access to Input/Output

• A standardized interface for I/O between virtual

machines and hypervisors

• Abstract device functionality instead of hardware

• Drivers are widely available in all major operating

systems (Linux, Android, BSD, Windows, etc)

• Supported by all clouds and enterprise hypervisors

Guest VM

Hypervisor

SoC

VIRTIO

Reliable and proven technology

Versatile abstraction model

Scalable and high performance

Multiple interoperable
implementations

Broad ecosystem across multiple
industries

VirtIO as a Common Device Virtualization Framework for Automotive

17

Common Interface

AGL/Android Middleware

Apps

SoC A SoC B SoC C SoC D

Hypervisor X Hypervisor Y Hypervisor Z

Proprietary Backend
Device Drivers XA, YA

Proprietary Backend
Device Drivers YB

Proprietary Backend
Device Drivers YC, ZC

Proprietary Backend
Device Drivers ZD

Enhanced Freedom to Choose Hypervisor and SoC Combination

Linux

Exten
sion

Limited Fragmentation=

Common Interface defined by

VirtIO largely improves community

and encourages

 “Virtualization Ready BSP”

VirtIO Framework &
 Standard Para Virtual Devices (Front End)

✓ Healthy
 Competition
✓ Efficiency

Excerpt from Panasonic’s Keynote Presentation at the AGL AMM July 2020

18

VirtIO

VirtIO as a Common Framework for Virtualized Automotive OS

In parallel to steady progress of specification standardization, rapid implementation evolvement has been
occurred in various OSS communities to fulfill most of fundamental automotive, indicating VirtIO as the de
facto standard of automotive industry.

VirtIO Beyond Traditional Hypervisor Virtualization

19

SoC A SoC B SoC C Cloud Server

Proprietary Device
Drivers A

Proprietary Device
Drivers B

Proprietary Device
Drivers C

Emulated Device

AGL Middleware

Apps

Linux

Extensi
on

VirtIO Interface

Maximized commonality

of OS-level SW among

SoCs, virt/non-virt,

cloud/edge environment

Use VirtIO as Common I/F with

Cloud-based AGL to enhance

interchangeability between cloud-

AGL and native-AGL

Utilize VirtIO as a well-defined device HAL

even for non-virt AGL may further helps

to reduce fragmentation across SoCs and

encourage “AGL-ready BSP”

Develop & Test in Cloud

Deploy in Native (Real HW)

VirtIO Work for Non-Hypervisor Environment

AGL

VirtIO

SoC

Non-Hypervisor
Environment

Working together with AGL community members, Non-hypervisor VirtIO based
virtualization has been in a steady progress.
• Finished Design & Implementation of a common virtio-based HAL layer “virtio-

loopback” portable to execute on both native and virtual environments with
basic devices (blk, rng, input) support

• Continue next-step work to support more devices this year to enable a complete
AGL UCB running on the top of virtio-loopback devices

• Plan to extend the use case from single-ECU to multi-ECU and cloud-native

Device Total Score Priority

Input Device 29 1

Display 27 2

GPU 26 3

CAN bus 20 4

Block Device 19 5

Audio 18 6

Ethernet 11 7

Bluetooth 9 8

SPI 8 9

Serial console 8 9

SCMI 8 9

Priority of Device Virtualization
Voted by AGL Members (2021)

App

Common VirtIO Lib

Linux SubSystem

user

kernel

VirtIO Frontend Driver

SoC

Vendor User Lib

Linux Subsystem

Vendor
Device
Driver

VirtIO Device
 (e.g vhost-user virtio
device)

Frontend VM

Virtio-loopback transport

Vendor
Device
Driver

Vendor
Device
Driver

Vendor User LibVendor User Lib

High Level Architecture Design Status and Future Plan

2022

•virtio-blk

•virtio-rng

•virtio-input

2023

•virtio-gpu

•virtio-snd

•virtio-can

•virtio-gpio,

i2c

Future

•Support on
multi-ECU

architecture

•Support on

cloud-native

* Check more details about Non-hypervisor VirtIO at
https://www.youtube.com/watch?v=Lfj3dYCAiik&list=PL
6EdENMl-83iGkh4kpeWFclW5ULIJDqxs&index=23

VirtIO Work for Cloud-Native Environment

21

• Identical IVI binary can be run on both cloud and edge -> OS-level binary parity
• Same OS binary can be deployed to different automotive hardware -> SoC Agnostic

Edge

Cloud

AWS Graviton

AGL
IC VM

VirtIO

KVM

Android
IVI VM

VirtIO

AGL
IC VM

VirtIO

COQOS Hypervisor

Android
IVI VM

VirtIO

AGL Reference Hardware

AWS Graviton G5g
Cloud Instance

AGL Reference Hardware
(Panasonic SkipGen-Flex)

Identical
AGL Binary

22

VirtIO Work for Cloud-Native Environment

Advanced Use Case of VirtIO: Display Virtualization

Enabling Software-Defined Architecture

Display Trends in the Automotive Industry

The increasing number of in-vehicle displays has created a demand for flexible application display

across multiple displays, introducing new UI/UX possibilities.

However, developing this flexibility using existing graphic frameworks is costly.

=> Needs a “Software-Defined” display framework that separates software from hardware.

24© Panasonic Automotive Systems Co., Ltd

Meter
Infotai
nment CMSHUD

Creating ad hoc
interlinkages

25

Strict Restriction on ECU & Function-Display

Relationship causing harmful Impediment for Cockpit UX

Legacy HMI System

Full Flexibility on ECU & Function-Display

Relationship for Cockpit UX Innovation

Unified HMI System

Software-Defined Display Virtualization Technology - Unified HMI

2022年5月 | © パナソニックオートモーティブシステムズ株式会社 26

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP AP AP

HV

OS OS OS

HV HV HV

HW HW HW

Distribution

Centralization
Orchestration

Orchestrator

OS OS OS

Unified HMI – Local/Remote VirtIO GPU

AP
AP

AP
AP AP

AP

Unified HMI, as a virtual display technology, has been a good example of decoupling application implementation from
underlying computing architecture, which enables a flexible, dynamic and fast-evolved Cockpit/Cabin UI/UX

Applications

Operating Systems

Hardware

Unified HMI – Distributed Window Manager &
Framework

Unified control of all physical displays by mappig multiple

physical displays into a single large virtual display

Software-Defined Display Virtualization Technology - Unified HMI

Concept of Unified HMI

Unified HMI is a “Software-Defined” display virtualization platform that allows for flexible

development of the entire cockpit UI/UX across multiple displays independent of hardware and

OS configuration.

The entire cockpit UI/UX is developed using virtual ECU in the cloud and it can be seamlessly

deployed to the physical ECU, enabling rapid development and deployment through OTA updates.

27© Panasonic Automotive Systems Co., Ltd

Various Functional Application Modules

UnifiedHMI /Distributed Computing Framework

Unified HMI Schematic Architecture

28

Linux

virtio-mmio

① Apps are rendered with virtual GPU (VirtIO-GPU)

② Graphics are drawn by remote system through proxy requests

③ Layouts are managed by the distributed window manager

SoC/VM A

Mesa

App

OpenGL ES
Command

Network Proxy

OpenGL ES
Command Receiver

SoC/VM B

virtio-gpu

OpenGL ES
Command
Generation

UI Graphic
Processing

virtio-loopback

Linux

OpenGL
lib

OpenGL ES
Command Receiver

SoC/VM C

Linux

OpenGL
lib

Network communication

display2display1

Distributed
Window
Manager

Distributed
Display

Framework

Distributed
Display

Framework

Unified HMI Demo

29© Panasonic Automotive Systems Co., Ltd

Value Unified HMI provides

30© Panasonic Automotive Systems Co., Ltd

Agile & Software-Defined Cockpit UI/UX Development

• Efficient and integrated cockpit UI/UX development & evaluation on virtual environment

• Scalable to deploy seamlessly to various car grades/models

Fast-evolving & Personalized Cockpit UI/UX Experience

• Upgraded customer experience from frequent OTAs on UI/UX improvements

• Flexible cockpit UI/UX able to be customized according to user preference no matter of car grades/models

For Automotive Users

For Automotive Developers

Unified HMI OSS Activities

Publish Unified HMI
on GitHub*
(2022.9)

Unified HMI Demo
in CES

(2023.1)

Apply Unified HMI to Latest
AGL UCB Version PP

(2023.7)

Unified HMI OSS Roadmap

*) https://github.com/Panasonic-Automotive/remote-virtio-gpu *)https://www.youtube.com/watch?v=k_T2zbEjlA0&list=PL6Ed
ENMl-83iGkh4kpeWFclW5ULIJDqxs&index=12

Achieving a Software-Defined Multi-Display System
with Unified HMI - Kenta Murakami, Panasonic

@AGL All Member Meeting 2023 Summer

https://github.com/Panasonic-Automotive/remote-virtio-gpu
https://github.com/Panasonic-Automotive/remote-virtio-gpu

Moving Forwards: Constructing a Healthy Ecosystem

around Device Virtualization

Ideal Device Virtualization Framework for Software Defined Vehicle

2023 © Panasonic Automotive Systems Co., Ltd. 33

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP AP AP

HV

OS OS OS

HV HV HV

HW HW HW

Distribution

Centralization
Orchestration

Orchestrator

OS OS OS

HW-Agnostic Device Virtualization Framework

AP
AP

AP
AP AP

APApplications

Operating Systems

Hardware

OS-Agnostic Device Service Manager & Framework

Scalable Open Architecture for Embedded Edge

Scalable, Open, Automotive, Flexible, Efficient, Endurable

Ideal Device Virtualization Framework for Software Defined Vehicle

2023 © Panasonic Automotive Systems Co., Ltd. 34

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP AP AP

HV

OS OS OS

HV HV HV

HW HW HW

Distribution

Centralization
Orchestration

Orchestrator

OS OS OS

HW-Agnostic Device Virtualization Framework

AP
AP

AP
AP AP

APApplications

Operating Systems

Hardware

OS-Agnostic Device Service Manager & Framework

Scalable Open Architecture for Embedded Edge

Scalable, Open, Automotive, Flexible, Efficient, Endurable

Let’s
Be Together & Be Open

in
Creating a Standard SDV Enabling Virtualization Framework

	発表内容ドラフト
	Slide 1
	Slide 2: Who am I ?
	Slide 3
	Slide 4
	Slide 5: Drastic Changes in Automotive Architecture
	Slide 6: Shifting to SDVs - Changing the Mind of Vehicle Values
	Slide 7: Game Change in the Automotive Industry
	Slide 8: Desirable Direction of Automotive System Architecture
	Slide 9: Historical Trend of General Computing Architecture (Distribution and Centralization)
	Slide 10
	Slide 11: Historical Trend of General Computing Architecture (Distribution and Centralization)
	Slide 12: Today Focus: Device Virtualization – Key to Software Defined Vehicles
	Slide 13
	Slide 14
	Slide 15: Pains around Virtualization in the Past
	Slide 16: Enter Standard Virtualization Framework - VirtIO
	Slide 17: VirtIO as a Common Device Virtualization Framework for Automotive
	Slide 18
	Slide 19: VirtIO Beyond Traditional Hypervisor Virtualization
	Slide 20: VirtIO Work for Non-Hypervisor Environment
	Slide 21: VirtIO Work for Cloud-Native Environment
	Slide 22
	Slide 23
	Slide 24: Display Trends in the Automotive Industry
	Slide 25
	Slide 26: Software-Defined Display Virtualization Technology - Unified HMI
	Slide 27: Concept of Unified HMI
	Slide 28: Unified HMI Schematic Architecture
	Slide 29: Unified HMI Demo
	Slide 30: Value Unified HMI provides
	Slide 31
	Slide 32
	Slide 33: Ideal Device Virtualization Framework for Software Defined Vehicle
	Slide 34: Ideal Device Virtualization Framework for Software Defined Vehicle

